Code: 20EE6502

III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

REACTIVE POWER CONTROL IN ELECTRIC SYSTEMS

(HONORS in ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain the reactive power characteristics.	L3	CO2	7 M				
	b)	What are reactive characteristics of ideal	L3	CO2	7 M				
		load compensator? Discuss its objectives.							
	OR								
2	a)	Explain how load compensators act as a	L3	CO2	7 M				
		voltage regulator for phase balancing of							
		unsymmetrical load.							
	b)	Explain the method of power factor	L3	CO2	7 M				
		correction of unsymmetrical loads.							
	I.								
UNIT-II									
3	a)	Explain in detail about the shunt	L3	CO2	7 M				
		compensation in transmission lines.							
	b)	List the FACTS devices used for reactive	L4	CO3	7 M				
		compensation and explain about SVC(Static							

		VAR compensator).					
		OR					
4	a)	Distinguish between an uncompensated line	L3	CO2	7 M		
	1 \	and compensated line.	1.0	002	7.14		
	b)	Explain in detail about the series	L3	CO2	7 M		
		compensation in transmission lines.					
UNIT-III							
5	a)	Explain how electromagnetic interference	L3	CO4	7 M		
		occurs in transmission lines.					
	b)	Discuss the transmission benefits to	L3	CO4	7 M		
		consumer and supplier after improvement of					
		system by adopting reactive power strategy.					
		OR					
6	a)	Distinguish between reactive power	L3	CO4	7 M		
		compensation and reactive power					
		coordination.					
	b)	Discuss various kinds of disturbances that	L4	CO3	7 M		
		will occur in Transmission line.					
		UNIT-IV					
7	a)	Describe the objectives of reactive power	L3	CO4	7 M		
		planning.					
	b)	Explain the types of load shaping methods.	L3	CO2	7 M		
	1	OR		<u>. </u>			
8	a)	Explain the methods of loss reduction in	L3	CO4	7 M		
		demand side management.					
	b)	What are the various load patterns? Explain.	L3	CO2	7 M		
				<u> </u>			

	UNIT-V							
9	a)	Explain the purpose of using capacitors for	L3	CO4	7 M			
		reactive power management.						
	b)	Explain user side reactive power	L4	CO3	7 M			
		management and mention the significance						
		of reactive power for domestic purpose.						
OR								
10	a)	Explain various deciding factors for user	L3	CO4	7 M			
		side reactive power management.						
	b)	Discuss the advantages and disadvantages	L3	CO2	7 M			
		of using capacitors in reactive power						
		management.						